Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : e372-2017.
Article in English | WPRIM | ID: wpr-127715

ABSTRACT

Cadmium (Cd), a major component of cigarette smoke, disrupts the normal functions of airway cells and can lead to the development of various pulmonary diseases such as chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms involved in Cd-induced pulmonary diseases are poorly understood. Here, we identified a cluster of genes that are altered in response to Cd exposure in human bronchial epithelial cells (BEAS-2B) and demonstrated that Cd-induced ER stress and inflammation are mediated via CCAAT-enhancer-binding proteins (C/EBP)-DNA-damaged-inducible transcript 3 (DDIT3) signaling in BEAS-2B cells. Cd treatment led to marked upregulation and downregulation of genes associated with the cell cycle, apoptosis, oxidative stress and inflammation as well as various signal transduction pathways. Gene set enrichment analysis revealed that Cd treatment stimulated the C/EBP signaling pathway and induced transcriptional activation of its downstream target genes, including DDIT3. Suppression of DDIT3 expression using specific small interfering RNA effectively alleviated Cd-induced ER stress and inflammatory responses in both BEAS-2B and normal primary normal human bronchial epithelial cells. Taken together, these data suggest that C/EBP signaling may have a pivotal role in the early induction of ER stress and inflammatory responses by Cd exposure and could be a molecular target for Cd-induced pulmonary disease.


Subject(s)
Humans , Apoptosis , Cadmium , CCAAT-Enhancer-Binding Proteins , Cell Cycle , Down-Regulation , Epithelial Cells , Inflammation , Lung Diseases , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , RNA, Small Interfering , Signal Transduction , Smoke , Tobacco Products , Transcriptional Activation , Up-Regulation
2.
Tuberculosis and Respiratory Diseases ; : 247-254, 2017.
Article in English | WPRIM | ID: wpr-55337

ABSTRACT

BACKGROUND: Airway epithelial cells are the first line of defense, against pathogens and environmental pollutants, in the lungs. Cellular stress by cadmium (Cd), resulting in airway inflammation, is assumed to be directly involved in tissue injury, linked to the development of lung cancer, and chronic obstructive pulmonary disease (COPD). We had earlier shown that ACN9 (chromosome 7q21), is a potential candidate gene for COPD, and identified significant interaction with smoking, based on genetic studies. However, the role of ACN9 in the inflammatory response, in the airway cells, has not yet been reported. METHODS: We first checked the anatomical distribution of ACN9 in lung tissues, using mRNA in situ hybridization, and immunohistochemistry. Gene expression profiling in bronchial epithelial cells (BEAS-2B), was performed, after silencing ACN9. We further tested the roles of ACN9, in the intracellular mechanism, leading to Cd-induced production, of proinflammatory cytokines in BEAS-2B. RESULTS: ACN9 was localized in lymphoid, and epithelial cells, of human lung tissues. ACN9 silencing, led to differential expression of 216 genes. Pathways of sensory perception to chemical stimuli, and cell surface receptor-linked signal transduction, were significantly enriched. ACN9 silencing, further increased the expression of proinflammatory cytokines, in BEAS-2B after Cd exposure. CONCLUSION: Our findings suggest, that ACN9 may have a role, in the inflammatory response in the airway.


Subject(s)
Humans , Cadmium , Cytokines , Environmental Pollutants , Epithelial Cells , Gene Expression , Gene Expression Profiling , Immunohistochemistry , In Situ Hybridization , Inflammation , Lung , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , RNA, Messenger , Signal Transduction , Smoke , Smoking , Succinate Dehydrogenase
3.
International Journal of Stem Cells ; : 18-23, 2015.
Article in English | WPRIM | ID: wpr-171263

ABSTRACT

Self-renewal and differentiation are hallmarks of stem cells and controlled by various intrinsic and extrinsic factors. Increasing evidence indicates that estrogen (E2), the primary female sex hormone, is involved in regulating the proliferation and lineage commitment of adult and pluripotent stem cells as well as modulating the stem cell niche. Thus, a detailed understanding of the role of E2 in behavior of stem cells may help to improve their therapeutic potential. Recently, it has been reported that E2 promotes cell cycle activity of hematopoietic stem and progenitor cells and induces them to megakaryocyte-erythroid progenitors during pregnancy. This study paves the way towards a previously unexplored endocrine mechanism that controls stem cell behavior. In this review, we will focus on the scientific findings regarding the regulatory effects of E2 on the hematopoietic system including its microenvironment.


Subject(s)
Adult , Female , Humans , Pregnancy , Cell Cycle , Estrogens , Hematopoiesis , Hematopoietic Stem Cells , Hematopoietic System , Megakaryocyte-Erythroid Progenitor Cells , Pluripotent Stem Cells , Stem Cell Niche , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL